
Restart Policies
WatchTower
Insecure Registries
Operating Folder
Prune unused objects
Troubleshooting
aliases
Using Docker for temp app usage

Docker

To configure the restart policy for a container, use the --restart flag when using the docker run
command. The value of the --restart flag can be any of the following:

Flag Description

no Do not automatically restart the container. (the default)

on-failure
Restart the container if it exits due to an error, which
manifests as a non-zero exit code.

always

Always restart the container if it stops. If it is manually
stopped, it is restarted only when Docker daemon restarts
or the container itself is manually restarted. (See the
second bullet listed in restart policy details)

unless-stopped
Similar to always, except that when the container is
stopped (manually or otherwise), it is not restarted even
after Docker daemon restarts.

Restart Policies
Use a restart policy

https://containrrr.github.io/watchtower/

With watchtower you can update the running version of your containerized app simply by pushing
a new image to the Docker Hub or your own image registry. Watchtower will pull down your new
image, gracefully shut down your existing container and restart it with the same options that were
used when it was deployed initially.

WatchTower

version: "3"

services:

 watchtower.service:

 container_name: watchtower.service

 image: containrrr/watchtower:latest

 environment:

 - WATCHTOWER_CLEANUP=true

 - WATCHTOWER_SCHEDULE="0 4 * * 2 *"

 - WATCHTOWER_TIMEOUT=30s

 logging:

 options:

 max-size: "200k"

 max-file: "10"

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock

 - /root/.docker/config.json:/config.json

https://containrrr.github.io/watchtower/

in /etc/docker/daemon.json add this (don't forget comma after existing lines)

Insecure Registries

"insecure-registries":["192.168.10.110:5000"]

In /etc/docker/daemon.js (don't forget to comma after existing lines)

Operating Folder

"data-root": "/data/docker"

https://docs.docker.com/config/pruning/

The docker image prune command allows you to clean up unused images. By default, docker
image prune only cleans up dangling images. A dangling image is one that is not tagged and is not
referenced by any container. To remove dangling images:

To remove all images which are not used by existing containers, use the -a flag:

By default, you are prompted to continue. To bypass the prompt, use the -f or --force flag.

You can limit which images are pruned using filtering expressions with the --filter flag. For example,
to only consider images created more than 24 hours ago:

Other filtering expressions are available. See the docker image prune reference for more examples.

Prune unused objects
Prune images and containers

Prune images

$ docker image prune

WARNING! This will remove all dangling images.

Are you sure you want to continue? [y/N] y

$ docker image prune -a

WARNING! This will remove all images without at least one container associated to them.

Are you sure you want to continue? [y/N] y

$ docker image prune -a --filter "until=24h"

Prune containers

https://docs.docker.com/config/pruning/

When you stop a container, it is not automatically removed unless you started it with the --rm flag.
To see all containers on the Docker host, including stopped containers, use docker ps -a. You may
be surprised how many containers exist, especially on a development system! A stopped
container?s writable layers still take up disk space. To clean this up, you can use the docker
container prune command.

By default, you are prompted to continue. To bypass the prompt, use the -f or --force flag.

By default, all stopped containers are removed. You can limit the scope using the --filter flag.
For instance, the following command only removes stopped containers older than 24 hours:

Other filtering expressions are available. See the docker container prune reference for more
examples.

Volumes can be used by one or more containers, and take up space on the Docker host. Volumes
are never removed automatically, because to do so could destroy data.

By default, you are prompted to continue. To bypass the prompt, use the -f or --force flag.

By default, all unused volumes are removed. You can limit the scope using the --filter flag. For
instance, the following command only removes volumes which are not labelled with the keep label:

Other filtering expressions are available. See the docker volume prune reference for more
examples.

$ docker container prune

WARNING! This will remove all stopped containers.

Are you sure you want to continue? [y/N] y

$ docker container prune --filter "until=24h"

Prune volumes

$ docker volume prune

WARNING! This will remove all volumes not used by at least one container.

Are you sure you want to continue? [y/N] y

$ docker volume prune --filter "label!=keep"

Prune networks

Docker networks don?t take up much disk space, but they do create iptables rules, bridge network
devices, and routing table entries. To clean these things up, you can use docker network prune to
clean up networks which aren?t used by any containers.

By default, you are prompted to continue. To bypass the prompt, use the -f or --force flag.

By default, all unused networks are removed. You can limit the scope using the --filter flag. For
instance, the following command only removes networks older than 24 hours:

Other filtering expressions are available. See the docker network prune reference for more
examples.

$ docker network prune

WARNING! This will remove all networks not used by at least one container.

Are you sure you want to continue? [y/N] y

$ docker network prune --filter "until=24h"

https://bobcares.com/blog/iptables-no-chain-target-match-by-that-name-docker/

Troubleshooting

Our customers often approach us with this error. Firstly, we check if the firewall service

status using

systemctl restart iptables.service

If the service is down we restart the service.

Then, we check the iptables rules using the command

iptables -L

The docker firewall rules were missing thus it shows the error.

To resolve the error our Support Engineers restart the docker service. For instance, to

restart the docker we use the command,

service docker restart

While restarting the Docker, it automatically creates the firewall rules. And we ensure to

enable the firewall before restarting the docker.```

aliases
alias dcud="docker-compose up -d"

alias dcd="docker-compose down"

alias dcp="docker-compose pull"

alias dclf="docker-compose logs -f"

alias glances="docker run --rm --name=glances -v /var/run/docker.sock:/var/run/docker.sock:ro

--pid host --network host -it nicolargo/glances:latest-full"

alias ctop="docker run --rm -ti --name=ctop --volume

/var/run/docker.sock:/var/run/docker.sock:ro quay.io/vektorlab/ctop:latest"

pull, down, up

pdu() { dcp dcd dcud }

down, up

downup() { dcd dcud }

Using Docker for temp app
usage

docker run -it --rm -v .:/tmp -w /tmp node /usr/local/bin/npm install

